LIU Bin,GE Daqing,ZHANG Ling, LI Man,WANG Yan,WANG Yi,ZHANG Xiaobo,JIANG Liming,LIU Lin,SUN Yafei,GAO Binbin
jgg.
The IBIS-L ground-based SAR monitors the displacement of an observed object by combining of the stepped frequency continuous wave, synthetic aperture radar and an interferometry technique. To monitor the displacement after the landslide in Dashuchang town on September 1, 2014, we first discuss the key technology of the IBIS-L ground-based InSAR and the ground-based SAR system. Second, we summarize InSAR data processing flow. Then third, obtain displacement evolution characteristics with sub-millimeter precision and high spatial-temporal resolution. GB-InSAR results show that displacements of the middle-upper parts on the left and right sides of the landslide body are 120 mm and 75 mm respectively. This is caused by crack water and rain. Displacements of landslide body are impossible to produce larger secondary geological disasters.